Super Firetemp Board for Fire Protection of Pipe and Tanks

In most applications, high-temperature insulation is typically specified for energy savings, process control, and personnel safety. However, it can also be applied in chemical and petroleum industries as Structural Fire Protection (SFP). With SFP applications, the basic principle for installing insulation still applies – reduce heat-flow; however, the reason for doing so differs. In SFP applications, the objective is to reduce heat-flow from the outside-in to protect the integrity of the structural member in the case of a fire, whereas in typical applications, insulation reduces heat-flow to maintain process control. In the event of a fire, structural steel must be protected because when the temperature of the steel reaches 1000°F, its structural strength is reduced to 40% of its strength at ambient temperatures, threatening the integrity of the structure itself.

To estimate the insulation thickness that should be used for an SFP application, designers should target a specific hourly rating (the amount of time an insulation can withstand external heat before the steel beneath reaches 1000°F), by applying fire test data based on the mass of the structural element and the thickness of the insulation. Third-party data and test protocol ensures the structure will meet the time requirements (hourly rating) of the application before the temperature of the system reaches 1000°F.

Systems used for SFP in a chemical or petroleum environment are evaluated in accordance with UL 1709, which subjects the system to a temperature of 2000°F within 5 minutes after the start of the test. The test is run until the insulated steel has reached an average temperature of 1000°F with no single thermocouple reading greater than 1200°F. In the case of UL design XR301, several tests were performed on Johns Manville’s Super Firetemp M board using the UL 1709 test method. Different insulation thicknesses and structural steel weights were tested to develop parameters for estimating the thickness of insulation needed to meet a specific hourly rating. As a result of this testing, an equation was developed by Underwriter’s Laboratory and is shown below.

\[
h = \frac{1.08 R}{1.16 \left(\frac{W}{D}\right) + 0.26}
\]

Where:
- \(h \) = Firetemp M Board thickness ranging from 0.75 to 3.0”.
- \(R \) = Fire resistance rating ranging from 1-4 hours.
- \(D \) = Heated perimeter of steel column in inches.
- \(W \) = Weight of steel column in lbs. per ft.
- \((W/D)\) is limited to the range of 0.55 to 4.0.

1 UL 1709 Standard for Safety – Rapid Rise Fire Tests for Protection Materials for Structural Steel. Fire testing that requires a furnace temperature of 2000°F within 5 minutes of the start of the test. The test was developed to simulate hydrocarbon “pool” fires.
2 UL XR301 is a fire resistance design based on UL 1709 testing of JM/IIG Super Firetemp M board.
The attached UL listing shows several different geometries that include a circular pipe shape, a square column, angle iron, and structural I-beams that are included in the above equation applicability. Based on this information, the methodology shown above can be applied to the use of Super Firetemp M board on pipes and tanks (circular geometries) as long as the conditions in the equation above are followed (i.e., board thickness range of 0.75 to 3” and \(W/D \) ratio range of 0.55 to 4.0).

It’s important to note for SFP applications, as the ratio of \(W/D \) increases, less insulation thickness is required for a given fire rating due to the higher mass needed to be heated. Conversely, if the ratio of \(W/D \) decreases, more insulation thickness is required for a given fire rating to slow the heating of the structural steel to 1000°F.

Careful installation is required when applying insulation for fire protection. Care must be taken to avoid gaps between the boards to ensure there are no direct thermal paths from the outside of the insulation to the protected geometry. Stainless steel jacketing is required to provide resistance to flame and water impingement during fire-fighting.
 DESIGN No. XR301
BYBU.XR301
Fire Resistance Ratings - ANSI/UL 1709

Design/System/Construction/Assembly Usage Disclaimer

- Authorities having jurisdiction should be consulted in all cases as to the particular requirements covering the installation and use of UL Certified products, equipment, system, devices, and materials.
- Authorities having jurisdiction should be consulted before construction.
- Fire resistance assemblies and products are developed by the design submitter and have been investigated by UL for compliance with applicable requirements. The published information cannot always address every construction nuance encountered in the field.
- When field issues arise, it is recommended the first contact for assistance be the technical service staff provided by the product manufacturer noted for the design. Users of fire resistance assemblies are advised to consult the general Guide Information for each product category and each group of assemblies. The guide information includes specifics concerning alternate materials and alternate methods of construction.
- Only products which bear UL’s Mark are considered Certified.

BYBU - Fire-resistance Ratings - ANSI/UL 1709

See General Information for Fire-resistance Ratings - ANSI/UL 1709

Design No. XR301

March 27, 2017

Ratings — 1, 1-1/2, 2, 2-1/2, 3 and 4 Hrs.

* Indicates such products shall bear the UL or cUL Certification Mark for jurisdictions employing the UL or cUL Certification (such as Canada), respectively.

1. Steel Column* — W-shaped, tubular, 2L back to back, L and Extra Strong Pipe steel columns. Min size for W-shape column is W6x16, min size for tubular columns is TS 4 x 4 x 0.188 in.; min sizes for 2L back to back columns are 2-1/2x2-1/2x3/8 in. (W/D = 0.787), 5x3-1/2x3/8 in. (W/D = 0.77); min size for L Columns is 5x3-1/2x3/8 in. (W/D = 0.612); and min size for Extra Strong Pipe column is nominal diameter 4 in. with wall thickness 0.337 in. (W/D = 0.632), as shown under Item 5.
2. **Ribs** — (For use with W-shaped columns only) — Min 1 in. thick mineral and fiber board (see Item 5) cut to fit snugly and flush between column flanges. Ribs to be used to back up butt joints when board thickness is less than 1 in. Ribs are optional for boards 1 in. thick or greater.

3. **Adhesive** — Used to secure ribs (Item 2) in place and at butted joints on the sides of the column. May be used as spackle along joints and over recessed nail heads.

INDUSTRIAL INSULATION GROUP L L C — Type Calsilite CALBOND.

4. **Fasteners** — The boards (Item 5) are secured to the ribs and to one another by means of steel box (casing) nails spaced max. 8 in. O.C. beginning 3 in. from top and bottom ends. As an option, Type 5 drywall screws may be used. The min length of fasteners should be twice the thickness of the board.

5. **Mineral and Fiber Board** — The boards are cut in various widths to be compatible with the size of column being protected. For W-shaped columns, boards placed parallel with the flange are cut the width of the flange plus 1/4 in. Boards placed parallel with the web are cut the width of the web face plus twice the board thickness plus 1/4 in.

For tubular Extra Strong Pipe columns, boards are cut the width/diameter of the column plus the thickness of the board, plus 1/4 in.

The gap at the top of board protection shall be filled with a ceramic fiber material.

The thickness of mineral and fiber board (Item 5) required for rating periods of 1 h, 1-1/2 h, 2 h, 2-1/2 h, 3 h and 4 h may be determined by the equation:

\[
\frac{h}{1.08 R} = \frac{1}{1.16 (W/D) + 0.26}
\]

Where:

- \(h \) = Board thickness in the range 0.75-3 in.
- \(R \) = Fire resistance rating in hours (1-4 h).
- \(D \) = Heated perimeter of steel column in inches.
- \(W \) = Weight of steel column in lbs per ft with \((W/D) \) in the range 0.55 - 4.0.

As an alternate to the equation, the min thickness of mineral and fiber board required for various fire resistance ratings may be determined from the information in Table I.

TABLE I

<table>
<thead>
<tr>
<th>Column Size</th>
<th>W/D</th>
<th>1 Hr</th>
<th>1-1/2 Hr</th>
<th>2 Hr</th>
<th>2-1/2 Hr</th>
<th>3 Hr</th>
<th>4 Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS4x4x0.188</td>
<td>0.59</td>
<td>1-3/16</td>
<td>1-3/4</td>
<td>2-5/16</td>
<td>2-7/8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>TS8x8x0.25</td>
<td>0.81</td>
<td>15/16</td>
<td>1-3/8</td>
<td>1-13/16</td>
<td>2-1/4</td>
<td>2-3/4</td>
<td>–</td>
</tr>
<tr>
<td>W6x16</td>
<td>0.77</td>
<td>15/16</td>
<td>1-3/8</td>
<td>1-7/8</td>
<td>2-3/8</td>
<td>2-13/16</td>
<td>–</td>
</tr>
<tr>
<td>WBx28</td>
<td>0.96</td>
<td>13/16</td>
<td>1-3/16</td>
<td>1-9/16</td>
<td>2</td>
<td>2-3/8</td>
<td>–</td>
</tr>
<tr>
<td>W10x49</td>
<td>1.23</td>
<td>3/4</td>
<td>15/16</td>
<td>1-5/16</td>
<td>1-5/8</td>
<td>1-15/16</td>
<td>2-9/16</td>
</tr>
<tr>
<td>W12x106</td>
<td>2.11</td>
<td>3/4</td>
<td>3/4</td>
<td>13/16</td>
<td>1</td>
<td>1-3/16</td>
<td>1-5/8</td>
</tr>
</tbody>
</table>

JAPAN INSULATION CO LTD — Type Taikaiite boards coated with SM7000EX silicone emulsion to be applied at a rate of approximately 150 sq ft/gal in accordance with the manufacturer’s instructions which accompany the product. Field-coating must include all cut edges and field application coat of the entire assembly with LOTUSLITE A-20 emulsion spray. For field application, LOTUSLITE A-20 coating applied at a rate of minimum 150 sq ft/gal using a portable sprayer.

INDUSTRIAL INSULATION GROUP L L C — Type Super Firetemp boards coated with Type Dricote II silicone emulsion to be applied at a rate of approximately 150 sq ft/gal in accordance with manufacturer’s instructions which accompany the product. Field-coating must include all cut edges and field application coat of the entire assembly with Dricote II emulsion spray. For field application, Dricote II coating applied at a rate of minimum 150 sq ft/gal using a portable sprayer.

* Indicates such products shall bear the UL or cUL Certification Mark for jurisdictions employing the UL or cUL Certification (such as Canada), respectively.
The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Certified and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained in the Online Certification Directory subject to the following conditions: 1. The Guide Information, Assemblies, Constructions, Designs, Systems, and/or Certifications (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from UL" must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "© 2017 UL LLC".