DESCRIPTION
JM Corbond® Open-cell Appendix X Spray Polyurethane Foam (ocx SPF) insulation is a two-component, low-density, nonstructural insulation system designed for interior commercial, residential and industrial applications. JM Corbond ocx SPF is Class 1 rated and meets AC 377 NFPA 286 Appendix X requirements for application without an ignition barrier in attics and crawl spaces. JM Corbond ocx SPF is 100% water blown. The low-density nature allows for tremendous yield while providing excellent heat, air, and sound control. This multi-functionality results in high-performing buildings that are energy efficient, comfortable, and have better air quality. JM Corbond ocx SPF is compatible with most common construction materials.

RECOMMENDED USES
- Walls
- Unvented attics
- Floors
- Vented attics
- Ceilings
- Crawl spaces

ENVIRONMENTAL CONSIDERATIONS AND SUBSTRATE TEMPERATURES
Applicators must recognize and anticipate weather conditions prior to application to ensure highest-quality foam and to maximize yield. Ambient air, substrate temperatures and moisture are all critical factors. Extremes in ambient air and substrate temperature will influence the chemical reaction of the two components, directly affecting the yield, adhesion and the resultant physical properties of the foam insulation. To obtain optimum results, JM Corbond ocx SPF should be spray-applied to substrates when ambient air and substrate temperatures are within 45°–120°. All substrates to be sprayed must be free of dirt, soil, grease, oil and moisture prior to the application of JM Corbond ocx SPF. Moisture in any form — excessive humidity (>80% R.H.) rain, fog or ice — will chemically react with components and adversely affect system performance and corresponding physical properties. Precautions must be taken to prevent damage to adjacent areas from overspray.

PROCESSING PARAMETERS
Store at 60°–85°F in a dry well-ventilated area for several days prior to use. Heated trailers or conditioned tank storage may be necessary. Do not store in direct sunlight. Keep drums tightly closed when not in use and under dry air or nitrogen pressure of 2–3 psi after they have been opened. Shelf life is six months from date of manufacture when stored in original unopened containers at 40°–85°F.

JM Corbond ocx SPF should be thoroughly mixed and/or recirculated for 20–30 minutes prior to application. Continue mild agitation throughout application process.

Do not recirculate or mix JM or other suppliers’ “A” or “B” components into JM Corbond ocx SPF containers. 2:1 transfer pumps are recommended for material transfer from container to the proportioner.

The plural component proportioner must be capable of supplying each component within ±2% of the desired 1:1 mixing ratio by volume. Heaters should be set to deliver 115°F–140°F materials to the spray gun. Proportioner dynamic pressures should be 800–1450 psi range. These settings will ensure thorough mixing in the spray gun mix chamber in typical applications. Optimum hose pressure and temperature may vary as a function of the type of equipment, ambient and substrate conditions, and the specific application. It is the responsibility of the applicator to properly interpret equipment technical literature, particularly information that relates to the acceptable combinations of gun chamber size, proportioner output and material pressures. The relationship between proper chamber size and the capacity of the proportioner’s pre-heater is critical.

CAUTION: Extreme care must be taken when removing and reinstalling drum transfer pumps so as NOT to reverse the “A” and “B” components.

PERFORMANCE ADVANTAGES
- Improves energy efficiency
- Provides an effective air barrier
- Minimizes sound transmission
- Controls moisture infiltration
- Provides R-3.7 at 1 inch

REOCCUPANCY
- Evacuate the building or establish inclosures to isolate the spray area during application
- The application area must be properly ventilated during application and for 24 hours post application
- Re-entry time for non-SPF trade workers: 12 hours
- Re-entry time for building occupants: 24 hours
TYPICAL PHYSICAL PROPERTIES*

<table>
<thead>
<tr>
<th>Properties</th>
<th>Test Method</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-value (aged)</td>
<td>ASTM C518</td>
<td>3.7 at 1 inch</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D1621</td>
<td>25 psi</td>
</tr>
<tr>
<td>Core Density</td>
<td>ASTM D1622</td>
<td>0.5 pcf (Nominal)</td>
</tr>
<tr>
<td>Open-cell Content</td>
<td>ASTM D1940</td>
<td>>95%</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D1623</td>
<td>5.1 psi</td>
</tr>
<tr>
<td>Dimensional Stability</td>
<td>ASTM D2126</td>
<td><15% Change in Volume</td>
</tr>
<tr>
<td>Sound Transmission Coefficient</td>
<td>ASTM E90</td>
<td>38**(STC)</td>
</tr>
</tbody>
</table>
| Surface Burning Characteristics (at 4 inches) | ASTM E84 | Flame-Spread Index <25
| | | Surface-Developed Index <450 |

*These items are provided as general information only. They are approximate values and are not part of the product specifications.

**Residential exterior wall with 16” o.c. 2x4 wood studs, OSB sheathing, and ½” gypsum board. STC 40 with fiberboard siding.

PROCESSING PARAMETERS AND PHYSICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Temperature/Pressure/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportioner Temperature</td>
<td>“A” and “B” 115–140°F</td>
</tr>
<tr>
<td>Hose Temperature</td>
<td>“A” and “B” 115–140°F</td>
</tr>
<tr>
<td>Pressures</td>
<td>800–1450 psi (dynamic)*</td>
</tr>
<tr>
<td>Mix Ratio Parts</td>
<td>1 to 1 by volume “A” to “B”</td>
</tr>
<tr>
<td>Viscosity at 77°F</td>
<td>750 cps “B”</td>
</tr>
<tr>
<td>Shelf Life</td>
<td>6 months @ 40–85°F</td>
</tr>
</tbody>
</table>

*Dependent upon hose length

FLAMMABILITY CHARACTERISTICS

Surface Burning Characteristics: ASTM E84

Flame Spread: <25

Smoke: <450

Note: This numerical flame spread and all other data presented are not intended to reflect the hazards presented by this or any other material in actual fire situations.

The use of polyurethane foam in interior applications on walls or ceilings presents a fire risk unless protected by an approved 15-minute thermal barrier. One example of an approved “thermal barrier” is ½ inch gypsum wallboard. Consultation with building code officials before application is recommended.

Caution: Polyurethane foam may present a fire hazard if exposed to fire or excessive heat (e.g., cutting torches, soldering torches, etc.). Each firm, person or corporation engaged in the use, manufacture, production or application of polyurethane foams should carefully examine construction sequencing and end-use to determine any potential fire hazard associated with such product and to utilize appropriate precautionary and safety measures during construction.

SPRAYING

This spray system may be applied in passes of uniform thickness from a minimum of 2 inches to a maximum of 11.5 inches.

For maximum yield and productivity, the product may be applied in a single pass to the specified thickness or up to a 11.5 inch maximum pass.

CLEANUP LIQUIDS

Nonflammable solvents should be used for cleanup. Consult your solvent manufacturer MSDS for handling precautions.

PROTECTIVE EQUIPMENT

Spraying of polyurethane foam results in the atomizing of the components to a fine mist. Inhalation and exposure to the atomized particles must be avoided.

Applicants must use personal protective equipment recommended by the Center for Polyurethanes Industry for use in high pressure spray foam application.

Please visit www.spraypolyurethane.org for additional information on appropriate PPE selection and use.

SAFETY AND HANDLING

Applicants should ensure the safety of the job site and construction personnel by posting appropriate signs warning that all “hot work” such as welding, soldering and cutting with torches should not take place until a thermal barrier or approved equivalent is installed over any exposed polyurethane foam.

Appropriate literature has been assembled that provides information concerning the health and safety precautions that must be observed when handling JM Corbond® ocx SPF. Before working with this product, you must read and become familiar with the available information on its risks, proper use and handling, as well as required personal protective equipment. This cannot be overemphasized. Information is available in several forms, e.g., safety data sheets and product labels. More resources are available at polyurethane.org, sprayfoam.org, www.JM.com or by contacting your Johns Manville representative.

Note: The information contained in this bulletin is current as of January 2015. Please contact Johns Manville to determine whether this publication has been revised.
DESCRIPTION
This system is sprayable, open-cell polyurethane cellular plastic foam insulation designed to insulate buildings. The sprayed product, properly installed, results in a seamless, monolithic insulation adhered to the substrate. JM Corbond ocx SPF spray systems are technologically advanced, sophisticated materials and should be applied only by trained, qualified, experienced polyurethane spray applicators.

WALLS
JM Corbond ocx SPF may be applied to the interior of walls in commercial, residential, and industrial buildings. It may be applied within wall cavities or on fl at walls to a variety of substrates including but not limited to: metal, concrete, wood, gypsum board, fiberboard and painted or primed surfaces.

CATHEDRAL ROOFS
JM Corbond ocx SPF may be applied directly to the underside of roof sheathing between the rafters to the desired thickness. Traditional venting is not necessary and should be avoided (section 806.4 of the IRC).

VAPOUR RETARDER
JM Corbond ocx SPF insulation is intended for indoor applications. It is vapor permeable and will allow some diffusion of moisture through the insulation. For some applications of JM Corbond ocx SPF insulation, installation of a vapor retarder may be recommended. Refer to local codes and manufacturer’s written specifications to ensure compliance.

CLEARANCES TO HEAT SOURCES
A minimum of 3 inches of clearance is required between JM Corbond ocx SPF and combustion appliance flues, fireplace flues, recessed can lights, including IC-rated fixtures, heat lamps and other heat-producing sources.

COMBUSTION AIR TO COMBUSTION APPLIANCES
Modern construction techniques of house tightening require that outside air inlets be provided to deliver combustion air to natural gas, propane or oil-fired appliances such as furnaces, boilers, water heaters, space heaters, etc., including gas or wood-burning fireplaces. Backdraft dampers or positive pressure venting may be needed on combustion appliance vents to prevent negative air pressures developed by bath or kitchen vent fans from backdrafting combustion effluent into the building interior.

FIRE, THERMAL BARRIER AND IGNITION BARRIER WARNING: POLYURETHANE FOAMS WILL BURN WHEN EXPOSED TO FIRE
The use of polyurethane foam in interior applications on walls or ceilings may present a fire risk unless protected by an approved 15-minute thermal barrier. One example of an approved “thermal barrier” is ½ inch gypsum wallboard. See section 316.4 of the IRC or section 2603.4 of the IBC for further information on thermal barriers. Alternative solutions to prescribed thermal barriers are available as tested in accordance with NFPA 286. Please consult a Johns Manville representative for further information. Consulting with building code officials before application is recommended.

JM Corbond ocx SPF is Class 1 rated and meets AC 377 NFPA 286 Appendix X requirements for application without an ignition barrier in attics and crawl spaces that are entered only for service of utilities. JM Corbond ocx SPF may be installed up to a maximum thickness of 12 inches in accordance with these instructions and IAPMO ER NO. 372. Further information can be found in section 316.5.3 and 316.5.4 of the IRC. Please consult a Johns Manville representative for further information.

SUBSTRATE PREPARATION
For optimum results, surfaces receiving JM Corbond ocx SPF should be clean and dry, free of dirt, oil, solvents, grease, loose particulate, peeling coating or other foreign matter. Untreated wood, plywood and oriented strand board (OSB) typically do not need primer. JM Corbond ocx SPF also adheres well without primer to expanded polystyrene, extruded polystyrene, foil-faced insulation boards, concrete masonry units (CMU) and cured concrete. Ferrometallic substrates (especially mild steel) may be sand-blasted for increased adhesion in accordance with SSPC-SP6. Sand-blasted surfaces should be immediately primed with an epoxy/mide primer as recommended by the primer manufacturer. Galvanized and stainless steel, and aluminum substrates may be treated with an appropriate wash primer or adhesive prior to application of JM Corbond ocx SPF. Consult your primer manufacturer and JM for a specific recommendation. Acid wash or other pre-wash may also be needed.

SUBSTRATE TEMPERATURE AND MOISTURE
Substrates over 90°F, such as decks of cathedral roofs with sunshine above, require longer than minimum cooling time between passes. JM Corbond ocx SPF technical personnel should be consulted in all cases where application conditions are marginal. Moisture in the form of rain, dew, frost or other sources can seriously affect the adhesion of urethane foam to the substrate or to itself. During application, water reacts with the mixed foam components, seriously affecting the foam’s physical properties.

INDOOR APPLICATION PRECAUTIONS
All personnel in the spray area must be equipped with a fresh-air-supplied face mask or hood. Applicators must use personal protective equipment recommended by the Center for Polyurethanes Industry for use in high pressure spray foam application. Additional precautions include, but are not limited to:

a. Post warning signs at all work area entrances. (Available from JM at no charge.)
b. No welding, smoking or open flame.
c. Seal off the work area from adjacent rooms and ventilation ducts.
d. Mask areas required to prevent overspray such as windows, doors, tubs and showers, etc.
e. restrict access of nonapplication personnel.
f. Provide ventilation as needed.
g. Provide breathing and eye protection to both workers and spectators.

OUTDOOR APPLICATION PRECAUTIONS
All personnel in the spray area must be equipped with a fresh-air-supplied face mask or hood. Applicators must use personal protective equipment recommended by the Center for Polyurethanes Industry for use in high pressure spray foam application. The area surrounding the spray operation should be protected from overspray and exposure of individuals not involved in the spray operations. Additional precautions include, but are not limited to:

a. Post warning signs a minimum of 100 feet from all work areas.
b. No welding, smoking or open flame.
c. Close all air-intake vents on air-handling equipment on the building.
d. Provide breathing and eye protection for spectators.
e. Move vehicles out of area.
f. Do not apply when the wind velocity is greater than 10 mph to avoid overspraying of perimeter areas.
CLIMATIC CONDITIONS
Cold temperatures and high wind speeds retard the exothermic reaction of foam and can lead to poor adhesion, increased density and loss of yield, as well as thermal shock. Avoid moisture in the form of rain, dew and frost.

PROCESS SAFETY, HEALTH AND TOXICITY INFORMATION
Safety Data Sheets on product components and the finished product are available from JM. Installers of this product should read and understand the SDS before use.

PROTECTIVE EQUIPMENT
Spraying of polyurethane foam results in the atomizing of the components to a fine mist. Inhalation and exposure to the atomized droplets must be avoided. Applicators must use personal protective equipment recommended by the Center for Polyurethanes Industry for use in high pressure spray foam application. Precautions include, but are not limited to:
- a. Full-face mask or hood with fresh air source
- b. Fabric coveralls
- c. Non-permeable gloves
- d. Solvent-resistant gloves when handling new materials and cleaning solvents.

WARNING: Exposure may occur even when no noticeable odor is encountered.

PHYSICAL EXAMINATIONS OF PERSONNEL
All personnel to be employed in the spraying of these materials should have a complete physical examination prior to employment. Periodic checkups are recommended if the personnel continue to spray these materials. Personnel with the following conditions should avoid the spraying of these components:
- a. Asthma or chronic bronchitis
- b. Chronic respiratory disorders
- c. Sensitization to chemical substances including polymeric isocyanates

DERMAL EXPOSURE
If a major splash or spill of the raw material (A) or (B) component comes in contact with the skin, the affected area should immediately be washed with generous amounts of water from a safety shower or other water source. Contaminated clothing should be removed and the skin wiped with a clean dry cloth to remove residual material. The affected area should then be wiped with a 70% solution of rubbing alcohol (isopropel) followed by repeated washing with soap and water. If a rash develops, a physician should be consulted immediately.

EYE EXPOSURE
Splashes of either component into the eyes should be flushed immediately with generous amounts of water for at least 15 minutes. CONSULT TRAINED MEDICAL PERSONNEL IMMEDIATELY.

INHALATION
Symptoms of vapor inhalation are characterized by coughing, tightness in the chest and shortness of breath. Excessive exposure can produce serious, possibly irreversible lung damage. Smoking in the area of application increases the risk of pulmonary injury and must be prohibited. High concentrations of isocyanate may cause symptoms and problems to appear immediately. However, chronic exposure may also lead to the same symptoms and problems. IF BREATHING HAS STOPPED, ARTIFICIAL RESPIRATION MUST BE PROMPTLY APPLIED. If breathing is short, oxygen (if available) should be administered by trained medical personnel. OBTAIN MEDICAL ATTENTION IMMEDIATELY.

APPLICATORS
See the A&B component SDS for more complete raw material handling information.

CLEANUP
Nonflammable solvents should be used for cleanup. Consult your solvent manufacturer for handling precautions.

INCOMPATIBLE MATERIALS
The isocyanate component (A) is incompatible with strong bases, tertiary amines or water. These materials may cause rapid, spontaneous polymerization with subsequent generation of heat and gas.

DECONTAMINATION OF SPILLS
In the event of a major isocyanate (A) spill, the area should be immediately evacuated. Only personnel equipped with appropriate respiratory and eye protection equipment should remain. If the spill occurs indoors, the area should be ventilated and leaking containers should be taken outdoors and the remaining isocyanate transferred to other containers.

The spill should be covered with sawdust, ekoperl, vermiculite, fuller’s earth or other oil-absorbing material and should then be treated with a dilute solution of ammonium hydroxide/detergent. The neutralized material should be swept up and placed in a suitable container. The material should then be disposed of by a standard method consistent with good industrial practice and in accordance with environmental protection regulations in your area. Where permissible, sanitary landfill disposal is recommended.