

Advanced Composites Portfolio Overview

Johns Manville, a leading manufacturer of glass fiber reinforcements, has developed an innovative process for producing **polyamide-6 (PA-6) composite sheets**. The new proprietary technology is based on **anionically polymerized PA 6** (AP nylon) and **fiber reinforcements** (glass fiber, carbon fiber or hybrids).

Technology

JM's expertise in glass fiber manufacturing and in-depth understanding of fiber polymer interfaces in composites led to the development of a pioneering manufacturing technology to produce **fully impregnated PA-6 composite sheets**.

Fully impregnated Neomera® PA-6 Organosheet

The proprietary technology, covered by multiple U.S. and foreign patents, is versatile in terms of reinforcing materials and can be used to **impregnate glass, carbon, aramid, and hybrid reinforcements.** It enables the control of fiber content in composites and offers design flexibility for specific applications by incorporating the desired fiber orientations into fabrics with various weaving architecture. Neomera® PA-6 composite sheets are **produced in a continuous process** through the impregnation of fiber reinforcements with low viscosity caprolactam monomer, followed by the in situ anionic polymerization of caprolactam to form the thermoplastic polyamide matrix.

Neomera® PA-6 Composites Portfolio and Advantages

OS-6 Series: PA-6 organosheets based on continous, woven fabrics
NCF-6 Series: PA-6 composite sheets based on continous, non-crimp fabrics

JM Neomera[®] PA-6 composite sheets are manufactured continously at different thicknesses up to 3 mm through impregnation and in situ polymerization of caprolactam, a very low viscosity monomer. This leads to:

- favourable cost position
- Complete impregnation of reinforcing fibers
- high molecular weight PA-6 resulting from anionic polymerization of caprolactam
- Iow LCA value of < 6.8 GWP
- /// no thermal degredation
- A high impact strength

	OS-6 SERIES	NCF-6 SERIES
Resin	PA-6	PA-6
Fibers*	continuous, woven	continuous, non-crimp
Strength	• • •	• • • •
Stiffness	• • • •	• • • •
Impact Resistance	• • • •	• • • •
Formability	• •	• • •

Applications and Processing

The Neomera® PA-6 composite sheets are ideal for applications requiring:

Iight weightingpart integration

design flexibility

- A high volume composite manufacturing
- 🛝 short cycle time
 - 🛝 recyclability

OS-6 and NCF-6 Series products are ideal for hybrid molding processes such as injection and compression overmolding.

Underbody Shield

Material: Neomera® OS-6 Organosheet Project Partner: National Research Council Canada (STAMP Composites industrial R&D group) Process: Stamping Challenge: Complex shape Benefits: Light weighting Weight comparison (to standard metal part): 50% weight saving

Samples

Johns Manville's Composites in the OS-6 and NCF-6 Series are semi-finished sheets. Samples, including cut to-shape sheets, are available on request. Depending on fabric configuration, wider sheets (up to 1.6 meter) are available.

About Johns Manville

Johns Manville, a Berkshire Hathaway company (NYSE: BRK.A, BRK.B), is a leading manufacturer and marketer of premium-quality building and specialty products. In business since 1858, the Denver-based company has annual sales of \$4 billion and holds leadership positions in all the key markets that it serves. Johns Manville employs 8,000 people and operates 44 manufacturing facilities in North America and Europe.

CONTACT

Dany de Kock Market Development Manager Johns Manville +32 473 75 44 96 dany.dekock@jm.com

Visit us online for more information